12 Bay TFL3Y 98.1MHz

November 2015

General data of antenna System

TX station
Site Name
System of coordinates WGS84
Longitude
Latitude
Ground level a.s.I. (m)
1.0

Antenna system height (m)
Transmitter power(Watt)
20.0

Carrier wave frequency (MHz)
Antenna system central frequency (MHz)
Antenna base diagrams type 1
Polarization (H/V/C/X)
Transmitting cable attenuation (dB)
1.000

Additional attenuations(dB)
98.100
98.100

TFL3Y
V

Base diagrams sectors ($\mathrm{T}=$ All, $\mathrm{F}=$ Front)
Velocity factor of cables to Antennas ($0 \div 1$)
0.0

Coordinate System(C = cartesian, $\mathrm{P}=$ polar)
Mast side / diameter(cm)
0.0

Mast cross section (T/Q/C)
Structure rotation w.r.t. North (${ }^{\circ}$)
T
1.00

Mast rotation w.r.t. North (${ }^{\circ}$) 0.0
P
0.0

Q
0.0

Information about antennas used in the System

	Antenna
Manufacturer	Telecom
Antenna model	TFL3Y
Band start(MHz)	87
Band stop(MHz)	108
diagrams Frequency(MHz)	98.10
Polariz (H/V/C/X)	V
Vertical dist (cm)	154
Height (cm)	174
Width (cm)	18
Thickness (cm)	154
Weight (Kg)	13.5
Maximum power (KW)	3.5
Gain (dBd)	3.9
North E.C. (cm)	60
East E.C. (cm)	0
Return loss (dB)	0
R.C.Phase $\left(^{\circ}\right)$	0

Geometrical and electrical data of antenna System

	Power (\%)	$\begin{aligned} & \text { Tilt } \\ & \left({ }^{\circ}\right) \end{aligned}$	Az. ($\%$ N)		Phase (${ }^{\circ}$	\checkmark dist. (m)	Scr-d (cm)	Scr-Az ($\%$ N)	$\begin{aligned} & \text { Rot. } \\ & (1 \div 4) \end{aligned}$	$\begin{aligned} & \text { Type } \\ & (1 \div 2) \end{aligned}$	L cables (cm)	Car. phase $\left({ }^{\circ}\right)$
1	8.333	0	0	0	+0.0	14.30	0.0	0.0	1	1	0.0	0.0
2	8.333	0	0	0	+0.0	11.70	0.0	0.0	1	1	0.0	0.0
3	8.333	0	0	0	+0.0	9.10	0.0	0.0	1	1	0.0	0.0
4	8.333	0	0	0	+0.0	6.50	0.0	0.0	1	1	0.0	0.0
5	8.333	0	0	0	+0.0	3.90	0.0	0.0	1	1	0.0	0.0
6	8.333	0	0	0	+0.0	1.30	0.0	0.0	1	1	0.0	0.0
7	8.333	0	0	0	+0.0	-1.30	0.0	0.0	1	1	0.0	0.0
8	8.333	0	0	0	+0.0	-3.90	0.0	0.0	1	1	0.0	0.0
9	8.333	0	0	0	+0.0	-6.50	0.0	0.0	1	1	0.0	0.0
10	8.333	0	0	0	+0.0	-9.10	0.0	0.0	1	1	0.0	0.0
11	8.333	0	0	0	+0.0	-11.70	0.0	0.0	1	1	0.0	0.0
12	8.333	0	0	0	+0.0	-14.30	0.0	0.0	1	1	0.0	0.0

Plan of antenna system

Side of antenna system

Antennas arrays data

Note: calculation of single antennas arrays data (without taking into account mutual effects)

A. Antennas array azimuth ($\left.{ }^{\circ} / \mathrm{N}\right)$	0
B. Number of antennas	12
C. Nominal power supply (W)	1.00
D. Losses (addit. + cables) (dB)	0.0
E. Effective power supply (W)	1.00
F. Theor. maximum gain (dBd)	14.69
G. Distribution losses (dB)	0.00
H. Nominal max gain F - G (dBd)	14.69
I. Compensation losses (dB)	0.20
J. Effec. max gain H - I (dBd)	14.4
K. Effec. max gain (times)	28.14
L. Effec. max power E * K (KW)	0.0281
M. Max power depr. angle (${ }^{\circ}$)	0.1
N. Max power az. angle $\left({ }^{\circ}\right)$	358

Diagram in dBK calculated at horizon

Az. $\left({ }^{\circ} / \mathrm{N}\right)$	dBK						
0	-15.5	90	-19.8	180	-27.4	270	-20.7
10	-15.6	100	-21.0	190	-27.6	280	-19.4
20	-15.7	110	-22.5	200	-27.7	290	-18.2
30	-15.9	120	-23.8	210	-27.5	300	-17.3
40	-16.1	130	-25.0	220	-27.3	310	-16.6
50	-16.5	140	-26.0	230	-26.6	320	-16.2
60	-17.1	150	-26.6	240	-25.4	330	-15.8
70	-17.8	160	-27.0	250	-24.0	340	-15.7
80	-18.7	170	-27.2	260	-22.3	350	-15.6

Diagram in dBK calculated at horizon
(without -20dBl's lower limit vs maximum power)

Az. ($/ \mathrm{N})$	dBK	Az. $\left({ }^{\circ} / \mathrm{N}\right)$	dBK	Az. $\left({ }^{\circ} / \mathrm{N}\right)$	dBK	Az. $\left({ }^{\circ} / \mathrm{N}\right)$	dBK
0	-15.5	90	-19.8	180	-27.4	270	-20.7
10	-15.6	100	-21.0	190	-27.6	280	-19.4
20	-15.7	110	-22.5	200	-27.7	290	-18.2
30	-15.9	120	-23.8	210	-27.5	300	-17.3
40	-16.1	130	-25.0	220	-27.3	310	-16.6
50	-16.5	140	-26.0	230	-26.6	320	-16.2
60	-17.1	150	-26.6	240	-25.4	330	-15.8
70	-17.8	160	-27.0	250	-24.0	340	-15.7
80	-18.7	170	-27.2	260	-22.3	350	-15.6

Horizontal diagram at 0.0° tilt (Total Antenna)

Horizontal diagram at 0.0° tilt (Total Antenna)

$\mathrm{Az}\left({ }^{\circ}\right)$	Er (\%)	ERP (W)	$\mathrm{Az}\left({ }^{\circ}\right)$	Er (\%)	ERP (W)	$\mathrm{Az}\left({ }^{\circ}\right)$	Er (\%)	ERP (W)
0.0	99.5	27.9	60.0	83.6	19.6	120.0	38.5	4.2
1.0	99.5	27.9	61.0	82.6	19.2	121.0	37.8	4.0
2.0	99.3	27.7	62.0	82.2	19.0	122.0	37.2	3.9
3.0	99.5	27.9	63.0	81.7	18.8	123.0	36.8	3.8
4.0	99.1	27.6	64.0	80.9	18.4	124.0	36.2	3.7
5.0	99.1	27.6	65.0	80.2	18.1	125.0	35.7	3.6
6.0	100.0	28.1	66.0	79.4	17.7	126.0	35.1	3.5
7.0	99.1	27.6	67.0	78.9	17.5	127.0	34.8	3.4
8.0	99.1	27.6	68.0	78.3	17.3	128.0	34.4	3.3
9.0	99.1	27.6	69.0	77.4	16.9	129.0	33.8	3.2
10.0	98.9	27.5	70.0	76.7	16.6	130.0	33.4	3.1
11.0	98.9	27.5	71.0	76.0	16.3	131.0	33.0	3.1
12.0	99.1	27.6	72.0	75.3	16.0	132.0	32.6	3.0
13.0	98.6	27.4	73.0	74.5	15.6	133.0	32.3	2.9
14.0	98.4	27.2	74.0	73.6	15.2	134.0	31.9	2.9
15.0	98.4	27.2	75.0	73.1	15.0	135.0	31.5	2.8
16.0	98.4	27.2	76.0	72.1	14.6	136.0	31.2	2.7
17.0	98.2	27.1	77.0	71.7	14.5	137.0	30.9	2.7
18.0	98.4	27.2	78.0	70.6	14.0	138.0	30.6	2.6
19.0	98.2	27.1	79.0	70.2	13.9	139.0	30.3	2.6
20.0	97.9	27.0	80.0	69.3	13.5	140.0	30.0	2.5
21.0	97.7	26.9	81.0	68.3	13.1	141.0	29.8	2.5
22.0	97.7	26.9	82.0	67.7	12.9	142.0	29.5	2.4
23.0	97.7	26.9	83.0	66.6	12.5	143.0	29.3	2.4
24.0	97.3	26.6	84.0	66.3	12.4	144.0	29.1	2.4
25.0	97.1	26.5	85.0	65.2	12.0	145.0	28.8	2.3
26.0	97.1	26.5	86.0	64.6	11.8	146.0	28.7	2.3
27.0	96.8	26.4	87.0	63.8	11.4	147.0	28.5	2.3
28.0	96.4	26.1	88.0	63.2	11.2	148.0	28.2	2.2
29.0	96.4	26.1	89.0	62.3	10.9	149.0	28.1	2.2
30.0	96.1	26.0	90.0	61.2	10.5	150.0	27.9	2.2
31.0	95.8	25.8	91.0	60.7	10.4	151.0	27.8	2.2
32.0	95.6	25.7	92.0	59.9	10.1	152.0	27.5	2.1
33.0	95.2	25.5	93.0	59.0	9.8	153.0	27.5	2.1
34.0	95.2	25.5	94.0	58.0	9.5	154.0	27.3	2.1
35.0	94.7	25.2	95.0	57.4	9.3	155.0	27.2	2.1
36.0	94.5	25.1	96.0	56.3	8.9	156.0	27.2	2.1
37.0	94.1	24.9	97.0	55.6	8.7	157.0	26.9	2.0
38.0	93.9	24.8	98.0	54.8	8.5	158.0	26.8	2.0
39.0	93.4	24.6	99.0	53.9	8.2	159.0	26.7	2.0
40.0	93.4	24.6	100.0	53.2	8.0	160.0	26.7	2.0
41.0	93.0	24.3	101.0	52.1	7.6	161.0	26.7	2.0
42.0	92.4	24.0	102.0	51.4	7.4	162.0	26.5	2.0
43.0	92.2	23.9	103.0	50.4	7.1	163.0	26.5	2.0
44.0	91.7	23.7	104.0	49.5	6.9	164.0	26.4	2.0
45.0	91.1	23.3	105.0	49.1	6.8	165.0	26.3	1.9
46.0	90.9	23.2	106.0	48.0	6.5	166.0	26.2	1.9
47.0	90.3	22.9	107.0	47.2	6.3	167.0	26.0	1.9
48.0	89.8	22.7	108.0	46.6	6.1	168.0	26.0	1.9
49.0	89.3	22.4	109.0	45.8	5.9	169.0	25.9	1.9
50.0	89.1	22.3	110.0	45.0	5.7	170.0	25.9	1.9
51.0	88.7	22.1	111.0	44.4	5.5	171.0	26.0	1.9
52.0	88.3	21.9	112.0	43.6	5.4	172.0	25.7	1.9
53.0	87.3	21.4	113.0	42.9	5.2	173.0	25.5	1.8
54.0	87.1	21.3	114.0	42.3	5.0	174.0	26.0	1.9
55.0	86.3	20.9	115.0	41.7	4.9	175.0	25.8	1.9
56.0	85.9	20.8	116.0	40.9	4.7	176.0	25.6	1.9
57.0	85.3	20.5	117.0	40.2	4.5	177.0	25.6	1.8
58.0	84.7	20.2	118.0	39.8	4.5	178.0	25.3	1.8
59.0	84.1	19.9	119.0	38.9	4.3	179.0	25.3	1.8

Horizontal diagram at 0.0° tilt (Total Antenna)

$\mathrm{Az}\left({ }^{\circ}\right)$	Er (\%)	ERP (W)	$\mathrm{Az}\left({ }^{\circ}\right)$	Er (\%)	ERP (W)	$\mathrm{Az}\left({ }^{\circ}\right)$	Er (\%)	ERP (W)
180.0	25.4	1.8	240.0	31.9	2.9	300.0	81.3	18.6
181.0	25.3	1.8	241.0	32.4	2.9	301.0	81.8	18.8
182.0	25.4	1.8	242.0	32.8	3.0	302.0	82.8	19.3
183.0	25.3	1.8	243.0	33.4	3.1	303.0	83.0	19.4
184.0	25.2	1.8	244.0	33.9	3.2	304.0	83.6	19.6
185.0	25.1	1.8	245.0	34.4	3.3	305.0	84.7	20.2
186.0	25.1	1.8	246.0	34.9	3.4	306.0	84.9	20.3
187.0	25.0	1.8	247.0	35.7	3.6	307.0	86.1	20.9
188.0	25.1	1.8	248.0	36.4	3.7	308.0	86.5	21.0
189.0	25.0	1.8	249.0	37.0	3.9	309.0	87.3	21.4
190.0	25.0	1.8	250.0	37.7	4.0	310.0	88.1	21.8
191.0	24.8	1.7	251.0	38.3	4.1	311.0	89.3	22.4
192.0	25.0	1.8	252.0	39.2	4.3	312.0	89.1	22.3
193.0	24.8	1.7	253.0	39.7	4.4	313.0	89.3	22.4
194.0	24.7	1.7	254.0	40.8	4.7	314.0	90.1	22.8
195.0	24.7	1.7	255.0	41.6	4.9	315.0	90.7	23.1
196.0	24.6	1.7	256.0	42.3	5.0	316.0	90.9	23.2
197.0	24.7	1.7	257.0	43.0	5.2	317.0	91.5	23.6
198.0	24.7	1.7	258.0	43.9	5.4	318.0	91.9	23.8
199.0	24.7	1.7	259.0	44.9	5.7	319.0	92.2	23.9
200.0	24.6	1.7	260.0	45.7	5.9	320.0	92.6	24.1
201.0	24.7	1.7	261.0	46.3	6.0	321.0	93.0	24.3
202.0	24.7	1.7	262.0	47.4	6.3	322.0	93.6	24.7
203.0	24.5	1.7	263.0	48.4	6.6	323.0	93.9	24.8
204.0	24.6	1.7	264.0	49.3	6.8	324.0	94.3	25.0
205.0	24.7	1.7	265.0	50.0	7.0	325.0	94.5	25.1
206.0	24.8	1.7	266.0	51.0	7.3	326.0	95.2	25.5
207.0	24.7	1.7	267.0	51.7	7.5	327.0	95.4	25.6
208.0	24.7	1.7	268.0	53.1	7.9	328.0	95.8	25.8
209.0	24.7	1.7	269.0	53.7	8.1	329.0	95.8	25.8
210.0	25.1	1.8	270.0	55.0	8.5	330.0	96.2	26.0
211.0	24.7	1.7	271.0	55.7	8.7	331.0	96.4	26.1
212.0	24.8	1.7	272.0	56.5	9.0	332.0	96.6	26.3
213.0	24.9	1.8	273.0	57.7	9.4	333.0	96.8	26.4
214.0	25.0	1.8	274.0	58.3	9.6	334.0	96.8	26.4
215.0	24.9	1.7	275.0	59.5	10.0	335.0	97.5	26.7
216.0	25.1	1.8	276.0	60.3	10.2	336.0	97.5	26.7
217.0	25.3	1.8	277.0	61.2	10.5	337.0	97.7	26.9
218.0	25.5	1.8	278.0	62.0	10.8	338.0	97.9	27.0
219.0	25.6	1.8	279.0	63.2	11.2	339.0	98.2	27.1
220.0	25.7	1.9	280.0	64.2	11.6	340.0	98.2	27.1
221.0	25.9	1.9	281.0	65.1	11.9	341.0	98.6	27.4
222.0	26.2	1.9	282.0	66.1	12.3	342.0	98.9	27.5
223.0	26.2	1.9	283.0	66.5	12.4	343.0	98.6	27.4
224.0	26.3	1.9	284.0	67.8	12.9	344.0	98.9	27.5
225.0	26.6	2.0	285.0	68.8	13.3	345.0	98.9	27.5
226.0	26.8	2.0	286.0	69.6	13.6	346.0	99.1	27.6
227.0	27.1	2.1	287.0	70.7	14.1	347.0	99.1	27.6
228.0	27.3	2.1	288.0	71.2	14.3	348.0	99.3	27.7
229.0	27.6	2.1	289.0	72.1	14.6	349.0	99.3	27.7
230.0	27.8	2.2	290.0	72.9	15.0	350.0	99.1	27.6
231.0	28.2	2.2	291.0	74.0	15.4	351.0	99.3	27.7
232.0	28.5	2.3	292.0	74.6	15.7	352.0	99.8	28.0
233.0	28.8	2.3	293.0	75.7	16.1	353.0	99.5	27.9
234.0	29.2	2.4	294.0	76.2	16.3	354.0	99.8	28.0
235.0	29.5	2.4	295.0	76.9	16.6	355.0	99.5	27.9
236.0	30.0	2.5	296.0	78.0	17.1	356.0	99.3	27.7
237.0	30.3	2.6	297.0	78.3	17.3	357.0	99.8	28.0
238.0	30.9	2.7	298.0	79.8	17.9	358.0	100.0	28.1
239.0	31.2	2.7	299.0	80.2	18.1	359.0	99.5	27.9

Vertical diagram at an azimuth of 5.4°

Vertical diagram at an azimuth of 5.4°

Dep (${ }^{\circ}$)	Er (\%)	ERP (W)	Dep $\left({ }^{\circ}\right)$	Er (\%)	ERP (W)	Dep (${ }^{\circ}$)	Er (\%)	ERP (W)
0.0	100.2	27.8	16.1	6.5	0.1	32.2	7.1	0.1
0.3	100.0	27.7	16.3	4.8	0.1	32.4	7.3	0.1
0.5	99.1	27.2	16.6	3.1	0.0	32.7	7.3	0.1
0.8	97.4	26.3	16.9	1.4	0.0	33.0	7.1	0.1
1.1	95.0	25.0	17.2	0.3	0.0	33.2	6.9	0.1
1.3	91.9	23.4	17.4	2.0	0.0	33.5	6.6	0.1
1.6	88.1	21.5	17.7	3.5	0.0	33.8	6.1	0.1
1.9	83.8	19.5	18.0	5.0	0.1	34.0	5.6	0.1
2.1	78.9	17.3	18.2	6.3	0.1	34.3	5.0	0.1
2.4	73.5	15.0	18.5	7.4	0.2	34.6	4.3	0.1
2.7	67.7	12.7	18.8	8.4	0.2	34.8	3.6	0.0
2.9	61.6	10.5	19.0	9.2	0.2	35.1	2.8	0.0
3.2	55.3	8.5	19.3	9.8	0.3	35.4	2.0	0.0
3.5	48.8	6.6	19.6	10.2	0.3	35.6	1.2	0.0
3.8	42.2	4.9	19.8	10.3	0.3	35.9	0.3	0.0
4.0	35.5	3.5	20.1	10.3	0.3	36.2	0.5	0.0
4.3	29.0	2.3	20.4	10.0	0.3	36.4	1.3	0.0
4.6	22.6	1.4	20.6	9.6	0.3	36.7	2.1	0.0
4.8	16.4	0.7	20.9	9.0	0.2	37.0	2.8	0.0
5.1	10.6	0.3	21.2	8.3	0.2	37.3	3.5	0.0
5.4	5.1	0.1	21.4	7.3	0.1	37.5	4.1	0.0
5.6	0.1	0.0	21.7	6.3	0.1	37.8	4.7	0.1
5.9	4.7	0.1	22.0	5.2	0.1	38.1	5.2	0.1
6.2	8.9	0.2	22.2	4.0	0.0	38.3	5.6	0.1
6.4	12.5	0.4	22.5	2.7	0.0	38.6	6.0	0.1
6.7	15.6	0.7	22.8	1.5	0.0	38.9	6.2	0.1
7.0	18.1	0.9	23.0	0.2	0.0	39.1	6.4	0.1
7.2	20.1	1.1	23.3	1.1	0.0	39.4	6.5	0.1
7.5	21.5	1.3	23.6	2.3	0.0	39.7	6.4	0.1
7.8	22.4	1.4	23.9	3.5	0.0	39.9	6.3	0.1
8.0	22.7	1.4	24.1	4.5	0.1	40.2	6.2	0.1
8.3	22.5	1.4	24.4	5.5	0.1	40.5	5.9	0.1
8.6	21.9	1.3	24.7	6.3	0.1	40.7	5.6	0.1
8.8	20.9	1.2	24.9	7.0	0.1	41.0	5.2	0.1
9.1	19.4	1.0	25.2	7.6	0.2	41.3	4.7	0.1
9.4	17.6	0.9	25.5	8.0	0.2	41.5	4.2	0.0
9.6	15.5	0.7	25.7	8.3	0.2	41.8	3.7	0.0
9.9	13.3	0.5	26.0	8.4	0.2	42.1	3.1	0.0
10.2	10.8	0.3	26.3	8.4	0.2	42.3	2.4	0.0
10.5	8.2	0.2	26.5	8.2	0.2	42.6	1.8	0.0
10.7	5.6	0.1	26.8	7.9	0.2	42.9	1.1	0.0
11.0	3.0	0.0	27.1	7.4	0.2	43.1	0.4	0.0
11.3	0.5	0.0	27.3	6.8	0.1	43.4	0.2	0.0
11.5	2.0	0.0	27.6	6.1	0.1	43.7	0.9	0.0
11.8	4.3	0.1	27.9	5.3	0.1	44.0	1.5	0.0
12.1	6.4	0.1	28.1	4.4	0.1	44.2	2.2	0.0
12.3	8.3	0.2	28.4	3.5	0.0	44.5	2.7	0.0
12.6	10.0	0.3	28.7	2.5	0.0	44.8	3.3	0.0
12.9	11.4	0.4	28.9	1.5	0.0	45.0	3.8	0.0
13.1	12.4	0.4	29.2	0.5	0.0	45.3	4.2	0.0
13.4	13.2	0.5	29.5	0.5	0.0	45.6	4.7	0.1
13.7	13.7	0.5	29.7	1.5	0.0	45.8	5.0	0.1
13.9	13.9	0.5	30.0	2.5	0.0	46.1	5.3	0.1
14.2	13.8	0.5	30.3	3.3	0.0	46.4	5.5	0.1
14.5	13.4	0.5	30.6	4.2	0.0	46.6	5.7	0.1
14.7	12.8	0.5	30.8	4.9	0.1	46.9	5.8	0.1
15.0	11.9	0.4	31.1	5.6	0.1	47.2	5.8	0.1
15.3	10.8	0.3	31.4	6.1	0.1	47.4	5.8	0.1
15.5	9.5	0.2	31.6	6.6	0.1	47.7	5.8	0.1
15.8	8.0	0.2	31.9	6.9	0.1	48.0	5.7	0.1

Vertical diagram at an azimuth of 5.4°

Dep (${ }^{\circ}$)	Er (\%)	ERP (W)	Dep (${ }^{\circ}$)	Er (\%)	ERP (W)	Dep (${ }^{\circ}$)	Er (\%)	ERP (W)
48.2	5.5	0.1	64.3	2.6	0.0	80.4	0.4	0.0
48.5	5.2	0.1	64.6	2.9	0.0	80.7	0.5	0.0
48.8	4.9	0.1	64.9	3.1	0.0	80.9	0.5	0.0
49.0	4.6	0.1	65.1	3.2	0.0	81.2	0.6	0.0
49.3	4.2	0.0	65.4	3.4	0.0	81.5	0.6	0.0
49.6	3.8	0.0	65.7	3.6	0.0	81.7	0.6	0.0
49.8	3.4	0.0	65.9	3.7	0.0	82.0	0.7	0.0
50.1	2.9	0.0	66.2	3.8	0.0	82.3	0.7	0.0
50.4	2.4	0.0	66.5	3.9	0.0	82.5	0.7	0.0
50.7	1.9	0.0	66.7	4.0	0.0	82.8	0.7	0.0
50.9	1.4	0.0	67.0	4.1	0.0	83.1	0.7	0.0
51.2	0.9	0.0	67.3	4.1	0.0	83.3	0.7	0.0
51.5	0.4	0.0	67.5	4.2	0.0	83.6	0.8	0.0
51.7	0.2	0.0	67.8	4.2	0.0	83.9	0.8	0.0
52.0	0.7	0.0	68.1	4.2	0.0	84.2	0.8	0.0
52.3	1.2	0.0	68.3	4.2	0.0	84.4	0.8	0.0
52.5	1.7	0.0	68.6	4.2	0.0	84.7	0.8	0.0
52.8	2.1	0.0	68.9	4.1	0.0	85.0	0.8	0.0
53.1	2.6	0.0	69.1	4.0	0.0	85.2	0.8	0.0
53.3	3.0	0.0	69.4	4.0	0.0	85.5	0.8	0.0
53.6	3.4	0.0	69.7	3.9	0.0	85.8	0.7	0.0
53.9	3.7	0.0	69.9	3.8	0.0	86.0	0.7	0.0
54.1	4.0	0.0	70.2	3.7	0.0	86.3	0.7	0.0
54.4	4.3	0.1	70.5	3.6	0.0	86.6	0.7	0.0
54.7	4.6	0.1	70.8	3.5	0.0	86.8	0.7	0.0
54.9	4.8	0.1	71.0	3.4	0.0	87.1	0.7	0.0
55.2	5.0	0.1	71.3	3.3	0.0	87.4	0.6	0.0
55.5	5.1	0.1	71.6	3.2	0.0	87.6	0.6	0.0
55.7	5.2	0.1	71.8	3.0	0.0	87.9	0.6	0.0
56.0	5.2	0.1	72.1	2.9	0.0	88.2	0.6	0.0
56.3	5.2	0.1	72.4	2.8	0.0	88.4	0.6	0.0
56.5	5.2	0.1	72.6	2.7	0.0	88.7	0.6	0.0
56.8	5.2	0.1	72.9	2.5	0.0	89.0	0.5	0.0
57.1	5.1	0.1	73.2	2.4	0.0	89.2	0.5	0.0
57.4	5.0	0.1	73.4	2.2	0.0	89.5	0.5	0.0
57.6	4.8	0.1	73.7	2.1	0.0	89.8	0.5	0.0
57.9	4.6	0.1	74.0	2.0	0.0	90.0	0.5	0.0
58.2	4.4	0.1	74.2	1.8	0.0	90.3	0.5	0.0
58.4	4.2	0.0	74.5	1.7	0.0	90.6	0.5	0.0
58.7	4.0	0.0	74.8	1.6	0.0	90.9	0.5	0.0
59.0	3.7	0.0	75.0	1.4	0.0	91.1	0.5	0.0
59.2	3.4	0.0	75.3	1.3	0.0	91.4	0.5	0.0
59.5	3.1	0.0	75.6	1.2	0.0	91.7	0.5	0.0
59.8	2.7	0.0	75.8	1.0	0.0	91.9	0.5	0.0
60.0	2.4	0.0	76.1	0.9	0.0	92.2	0.5	0.0
60.3	2.1	0.0	76.4	0.8	0.0	92.5	0.5	0.0
60.6	1.7	0.0	76.6	0.7	0.0	92.7	0.5	0.0
60.8	1.4	0.0	76.9	0.6	0.0	93.0	0.5	0.0
61.1	1.0	0.0	77.2	0.5	0.0	93.3	0.5	0.0
61.4	0.7	0.0	77.5	0.4	0.0	93.5	0.5	0.0
61.6	0.3	0.0	77.7	0.3	0.0	93.8	0.5	0.0
61.9	0.0	0.0	78.0	0.2	0.0	94.1	0.5	0.0
62.2	0.3	0.0	78.3	0.1	0.0	94.3	0.5	0.0
62.4	0.7	0.0	78.5	0.0	0.0	94.6	0.5	0.0
62.7	1.0	0.0	78.8	0.1	0.0	94.9	0.5	0.0
63.0	1.3	0.0	79.1	0.1	0.0	95.1	0.5	0.0
63.2	1.6	0.0	79.3	0.2	0.0	95.4	0.5	0.0
63.5	1.9	0.0	79.6	0.3	0.0	95.7	0.5	0.0
63.8	2.2	0.0	79.9	0.3	0.0	95.9	0.5	0.0
64.1	2.4	0.0	80.1	0.4	0.0	96.2	0.5	0.0

